4-2 Exponential Equations

4-2a: I can use exponential formulas to model and solve situations of growth and decay.

EXPONENTIAL FUNCTION

$$
\begin{aligned}
& f(x)=a(b)^{x} \text {-Exponent } \\
& \text { (y-intercept) (Multiplier) }
\end{aligned}
$$

$$
\begin{array}{l|l}
f(x)=2^{x} \\
\times & 2^{x} \\
\hline-2 & 0.25 \\
-1 & 0.5 \\
0 & 1.5 \\
1 & 2 \\
2 & 4
\end{array}
$$

Rule: as b increases, my function grows more quickly/ is mono steep.

Rule: as b increases, my function grows
mone quickly/is mono steep.

$$
f(x)=\underset{\substack{\text { Initial Value } \\(y \text {-intercept })}}{a(b))^{x} \text { Base Exponent }}
$$

$$
f(x)=2^{x}
$$

							7								
							6								
							5								
							4								
							3								
							2								
							1								
-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	
							-1								
							-2								
							-3								
							-4								
							-5								
							-6								
							-7								

Graph the following functions on a calculator and sketch.
$f(x)=2^{x}$
-2^{x}

What did you notice about the graphs and their equations? Is it a "reflection"? Why or why not? Not a reflection causedby-.
When $b>1$, the function represents exponential growth When $0<b<1$, the function represents exponential decay

$$
f(x)=1^{x}
$$

Exponential Growth and Decay

$$
f(t)=a(1 \pm r)^{t}
$$

$f(t)=$ value of the function after time (t) $\mathrm{a}=$ initial value r = interest rate (written in decimal form)
t = time (in years unless otherwise stated)

John researches a baseball card and find that it is currently worth $\$ 3.25$. However, it is supposed to increase in value 11% per year. $f(t)=a(1 \pm r)^{t} \quad(1+0.11)$
$0.11=r$
a) Write an exponential equation to represent this situation

$$
f(t)=3.25(1.11)^{t}
$$

b) How much will the card be worth in 10 years?

$$
=3.25(1.11)^{10}=79.23
$$

c) Use your graphing calculator to determine in how many years will the card be worth $\$ 26$.

> On federal income tax returns, self employed people can depreciate the value of business equipment. Suppose a computer valued at $\$ 2765$ depreciates at a rate of 30% per year. $f(t)=a(1 \pm r)^{t}$
a) Write an exponential equation to model this situation
b) How much will this computer be worth in 5 years?
c) Use your graphing calculator to determine in how many years will the computer be worth $\$ 350$.

The population of Orem in 1950 was 4,000 and was increasing at a rate of 2.6% per year.
a) Predict the population of Orem in 1975 and 2000.
b) Using your graphing calculator, predict when Orem's population will hit 200,000 people.

You try! ©

As a birthday present you received a pair of track shoes signed by Mr. Myrup that is valued at $\$ 500$ (ya know cause he's so awesome). Over time the value increases at a rate 5.5% per year.
a) Write an exponential equation to represent the situation.
b) How much will the shoes be worth after 7 years?
c) How long until they are worth $\$ 1000$?

Compound Interest Formula

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A(t)$ is the value after time (t)
P is the principal
r is the annual interest rate
n is the number of compounding periods per year
t is the time in years

Write an equation then find the final amount for each

investment.

a. $\$ 1000$ at 8% compounded semiannually for 15 years

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

You Try!

b. $\$ 1750$ at 3.65% compounded daily for 10 years

Using a calculator, determine how many years it will take for the amount to reach $\$ 4000$.

Write an equation then find the final amount for each investment.

a) An investment of $\$ 1000$ comounded monthly at a rate of 4.5%.
b) How much money is there after 5 years?
c) How long until the investment has tripled its value?

Investigate the growth of \$1 investment that earns 100\% annual interest ($r=1$) over 1 year as the number of compounding periods, n , increases. Do this with a group/partner.

Compounding schedule	n	$1\left(1+\frac{1}{n}\right)^{n}$	Value of A
annually	1		
semiannually	2		
quarterly	4		
monthly	12		
daily	365		
hourly	8760		
every minute	525600		

What does the value of A approach?

The value e is called the natural base

The exponential function with base $e, f(x)=e^{x}$, is called the natural exponential function.

$$
\begin{aligned}
& e \approx 2.71828182827 \\
& \text { what you need to know is } e \approx 2.7
\end{aligned}
$$

Evaluate $f(x)=e^{x}$ for
a. $x=2$
b. $x=1 / 2$
c. $x=-1$

Many banks compound the interest on accounts daily or monthly. However, some banks compound interest continuously, or at every instant, by using the continuous compounding formula.

Continuous Compounding Formula

If P dollars are invested at an interest rate r, that is compounded continuously, then the amount, A, of the investment at time t is given by

$$
A(t)=P e^{r t}
$$

A person invests \$1550 in an account that earns 4\% annual interest compounded continuously.
a. Write an equation to represent this situation
b. Using a calculator, find when the value of the investment reaches $\$ 2000$.
An investment of \$1000 earns an annual interest rate of 7.6\%.
Compare the final amounts after 8 years for interest compounded quarterly and for interest compounded continuously.

