4-1 Exponent Rules Review

4-1a: I can use properties of exponents to simplify and evaluate exponential expressions.

Like-terms review

Group the like terms and then

Name	Rule	Examples
 SUBTRACTING MONOMIALS	COMBINE LIKE TERMS!!! (DO NOT CHANGE common variables and exponents)	1. $9 x^{2} y-10 x^{2} y=$ 2. Subtract $6 w$ from $8 w$.
PRODUCT RULE	$x^{a} \cdot x^{b}=$	1. $h^{2} \cdot h^{6}=$ 2. $\left(-2 a^{2} b\right) \cdot\left(7 a^{3} b\right)=$
POWER RULE	$\left(x^{a}\right)^{b}=$	1. $\left(x^{2}\right)^{3}=$ 2. $\left(-2 m^{5}\right)^{2} \cdot m^{3}=$
QUOTIENT RULE	$x^{a}=$	1. $\frac{27 x^{5}}{42 x}=$
$x^{b}=$	2. $\frac{\left(y^{2}\right)^{2}}{y^{4}}=$	

ADDING \& SUBTRACTING MONOMIALS

COMBINE LIKE TERMS!!!
(DO NOT CHANGE common variables and exponents!)

1. $9 x^{2} y-10 x^{2} y=-1 x^{2} y=-x^{2} y$
2. Subtract $6 w$ from $8 w$.

$$
8 w-2 w=2 w
$$

$$
\begin{aligned}
& \text { PRODUCT RULE } \\
& \text { 1. } h^{2} \cdot h^{6}=h^{8} \cdot x^{b}=x^{a+b} \\
& \text { 2. }\left(-2 a^{2} b^{2}\right) \cdot\left(7 a^{3} b^{1}\right)=-14 a^{5} b^{2}
\end{aligned}
$$

$$
\begin{aligned}
x^{a} \cdot x^{b} & =x^{a+b} \\
x^{2} \cdot x^{3} & =x \cdot x \cdot x \cdot x \cdot x \\
& =x^{5} \rightarrow x^{2+3}
\end{aligned}
$$

POWER RULE $\quad\left(x^{a}\right)^{b}=x^{a \cdot b}$

1. $\left(x^{2}\right)^{3}=X^{6}$
2. $\left(-2 m^{5}\right)^{2} \cdot m^{3}=\longrightarrow 4 m^{13}$
$4 m^{10} \cdot m^{3}$
$(-2)^{2} \cdot\left(m^{5}\right)^{2}$

$$
\begin{aligned}
\left(x^{a}\right)^{b} & =x^{a \cdot b} \\
\left(x^{2}\right)^{3} & =x^{2} \cdot x^{2} \cdot x^{2} \\
& =x \cdot x \cdot x \cdot x \cdot x \cdot x \\
& =x^{6} \leadsto x^{2 \cdot 3}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
27 \ll_{9}^{3}<3 \\
\text { QUOTIENT RULE } \\
\substack{x \times x \times x \\
{ }^{4}}
\end{array}<_{2}^{3} \quad \frac{x^{a}}{x^{b}}=x^{a-b} \\
& \text { 1. } \frac{27 x^{5}}{42 x^{1}}=\frac{9 x^{4}}{14} \text { or } \frac{9}{14} x^{4} \\
& \text { 2. } \frac{\left(y^{2}\right)^{2}}{y^{4}}=\frac{y^{4}}{y^{4}}=y^{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{a}}{x^{b}}=x^{a-b} \\
& \frac{x^{7}}{x^{3}}=\frac{x / y / y|x| x x x x}{k-3}=x^{7}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{a}}{x^{6}}=x^{a-b} \\
& \frac{1 \cdot x^{3}}{x^{a}}=x^{-6} ? \frac{1}{x^{6}} ?
\end{aligned}
$$

NEGATIVE EXPONENT RULE

1. $-5 x^{-2}=\frac{-5}{x^{2}}$
2. $\frac{4 k^{2}}{8 k^{5}}=\frac{1}{2 k^{3}}$

ZERO EXPONENT RULE

$$
\text { 1. } 7 x^{0}=7 \cdot x^{0}=7 \cdot 1=7
$$

$$
\text { 2. } \frac{\left(w^{4}\right)^{2}}{w^{8}}=\frac{W^{8}}{w^{8}}=\sqrt{8}=1
$$

More Practice!

$\frac{9 p^{-2} q^{5}}{15 p^{2} q^{3}}$

$$
4 x^{2} y \cdot-3 x^{-5} y^{2}
$$

$$
\left(\frac{-9 c^{3} d}{c^{2} d^{2}}\right)^{2}
$$

Simplify each of the following:

$x \cdot x \cdot x \cdot x \cdot x=$
$x^{4} \cdot x^{9}=$
$(a b)^{14}=$
$\left(\frac{a}{2}\right)^{4}=$
k^{12}
$\overline{k^{5}}=$
$\left(\frac{1}{4}\right)^{0}=$

