4-1 Exponent Rules Review

4-1a: I can use properties of exponents to simplify and evaluate exponential expressions.

Name	Rule	Examples
ADDING & SUBTRACTING MONOMIALS	(DO NOT CHANGE common variables and exponents!)	1. $9x^2y - 10x^2y =$ 2. Subtract $6w$ from $8w$.
PRODUCT RULE	$x^a \cdot x^b =$	1. $h^2 \cdot h^6 =$ 2. $(-2a^2b) \cdot (7a^3b) =$
POWER RULE	$(x^{a})^{b} =$	1. $(x^2)^3 =$ 2. $(-2m^5)^2 \cdot m^3 =$
QUOTIENT RULE	$\frac{x^a}{x^b} =$	1. $\frac{27x^5}{42x} =$ 2. $\frac{(y^2)^2}{y^4} =$
NEGATIVE EXPONENT RULE	$x^{-a} =$	1. $-5x^{-2} =$ 2. $\frac{4k^2}{8k^5} =$
ZERO EXPONENT RULE	$x^0 =$	1. $7x^0 =$ 2. $\frac{(w^4)^2}{w^8} =$

$$(\chi^{a})^{b} = \chi^{a \cdot b}$$

$$(\chi^{2})^{3} = \chi^{2} \cdot \chi^{2} \cdot \chi^{2}$$

$$= \chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi$$

$$= \chi^{6} \chi^{2 \cdot 3} \sqrt{2}$$

$$27 < \frac{3}{9} < \frac{42}{3} < \frac{3}{2} < \frac{3}{2}$$

