							7								
							6								
							5								
							4								
							3								
							2								
							1								
-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	
							-1								
							-2								
							-3								
							-4								
							-5								
							-6								
							-7								

2\&3Oct Bellwork
(on half sheet of paper to turn in)

1. $\frac{2}{3}=\frac{8}{x} \quad X=12$
2. $\frac{9}{10}=\frac{k+3}{k=\frac{4}{5}}$

$$
\begin{aligned}
36 & =10(k+3) \\
36 & =10 k+30 \\
6 & =10 k \rightarrow \frac{6}{10}=k
\end{aligned}
$$

3. Define "proportion". (The word "ratio" or "scale factor" might be of use)

Equation that equates two ratios
23. Is there enough information to determine if this is a parallelogram? Justify your answer.

24. Explain, using definitions and theorems, why $m<a+m<b=m<d$

By Δ sum the,

$$
\angle a+\angle b+\angle c=180^{\circ}
$$

By linear pair,

$$
<c+<d=180^{\circ}
$$

Thus $<a+c b+c k=s k+c d$

$$
\sqrt{ } \quad<a+<b=<d
$$

25. Prove the Vertical Angle Theorem by showing that $<1 \cong<4$ 3

By linear pairs,

$$
\begin{gathered}
m<1+m<3=180^{\circ} \\
m<3+m<4=180^{\circ} \\
m<1+m<3=m<3+m<4 \\
m<1=m<4 \\
<1 \cong<4
\end{gathered}
$$

What does "similar" mean in geometry?
If I say, "these two rectangles are similar", what do I mean?

$$
\begin{array}{lr}
\frac{\text { Same }}{\text { Shape }} & \text { Different } \\
\text { Same <'s } & \text { Size-sidelength } \\
\text { Related by } K & \frac{1}{\text { Related by }}
\end{array}
$$

Definitions:
similar polygons: polygons having corresponding sides proportional and corresponding angles equal

similarity statement: Statement which defines two similar figures. For example, $\triangle A B C \sim \triangle D E F$
proportion実: by acommonratio equation that equates 2 ratios

The triangles are similar.

Proportion: an equation that equates two ratios

$$
\begin{gathered}
\frac{10}{20}=\frac{6}{12} \quad \frac{20}{10}=\frac{12}{6} \\
10(12)=20(6)
\end{gathered}
$$

Create two similar triangles with these proportions, and solve for the unknown.

$$
\frac{2}{3}=\frac{8}{?}
$$

Write a similarity statement.

Create two similar triangles with these proportions, and solve for the unknown.

$$
\frac{m}{3}=\frac{4}{8}
$$

Write a similarity statement.

$7 v+3$
 \longrightarrow

$$
\frac{10 x}{4}=\frac{2}{3}
$$

$$
\frac{9}{10}=\frac{k+3}{4}
$$

If $\triangle \mathrm{UVW}$ is the pre-image, what is k ?

Let's set up our similarity statement to help us determine k.

$\triangle U V W \sim$

$\triangle S R Q \sim$

$\triangle P Q R \sim \triangle P M N$

$\triangle Q R S \sim \triangle Q D C$

